aesthetic-dissonance:

sagihairius:

My mom just informed me that my first word was “quote” so I’m going to make sure my last word before I die will be “unquote”

you have been blessed with a rare and epic opportunity



tittily:

send this to your crush with no context

tittily:

send this to your crush with no context



shanellbklyn:

dynastylnoire:

stair-diving-with-hayes:

Ladies and Gentleman, the man that will be in history books. He was throwing the burning tear gas. Not to the cops but away from the children protesting. In his American Shirt and bag of chips. Check his twitter.

BOOOOOOOOOOOOOOOOOOOOOOOOST

HE HAS ALSO STATED NOT TO PURCHASE THE T-SHIRTS THAT ARE BEING SOLD WITH HIS IMAGE BECAUSE HIM NOR THE TOWN OF FERGUSON WILL SEE THAT MONEY! 

Just needs to be stated again! 

Not to the cops but away from the children protesting”







i’m not going to be that boring closed minded lover, who only takes his woman to see a movie, eat and back to his room.
— ya, no mas  (via renefields)


grantdouglasvvard:

the    i m p o s s i b l e    girl



distant-traveller:


New molecules around old stars

Using ESA’s Herschel space observatory, astronomers have discovered that a molecule vital for creating water exists in the burning embers of dying Sun-like stars.
When low- to middleweight stars like our Sun approach the end of their lives, they eventually become dense, white dwarf stars. In doing so, they cast off their outer layers of dust and gas into space, creating a kaleidoscope of intricate patterns known as planetary nebulas.
These actually have nothing to do with planets, but were named in the late 18th century by astronomer William Herschel, because they appeared as fuzzy circular objects through his telescope, somewhat like the planets in our Solar System.
Over two centuries later, planetary nebulas studied with William Herschel’s namesake, the Herschel space observatory, have yielded a surprising discovery.




Like the dramatic supernova explosions of weightier stars, the death cries of the stars responsible for planetary nebulas also enrich the local interstellar environment with elements from which the next generations of stars are born.
While supernovas are capable of forging the heaviest elements, planetary nebulas contain a large proportion of the lighter ‘elements of life’ such as carbon, nitrogen, and oxygen, made by nuclear fusion in the parent star.
A star like the Sun steadily burns hydrogen in its core for billions of years. But once the fuel begins to run out, the central star swells into a red giant, becoming unstable and shedding its outer layers to form a planetary nebula.


The remaining core of the star eventually becomes a hot white dwarf pouring out ultraviolet radiation into its surroundings.
This intense radiation may destroy molecules that had previously been ejected by the star and that are bound up in the clumps or rings of material seen in the periphery of planetary nebulas.
The harsh radiation was also assumed to restrict the formation of new molecules in those regions.
But in two separate studies using Herschel astronomers have discovered that a molecule vital to the formation of water seems to rather like this harsh environment, and perhaps even depends upon it to form. The molecule, known as OH+, is a positively charged combination of single oxygen and hydrogen atoms.




In one study, led by Dr Isabel Aleman of the University of Leiden, the Netherlands, 11 planetary nebulas were analysed and the molecule was found in just three.
What links the three is that they host the hottest stars, with temperatures exceeding 100 000ºC.
“We think that a critical clue is in the presence of the dense clumps of gas and dust, which are illuminated by UV and X-ray radiation emitted by the hot central star,” says Dr Aleman.
“This high-energy radiation interacts with the clumps to trigger chemical reactions that leads to the formation of the molecules.”

Image credit: Hubble image: NASA/ESA/C. Robert O’Dell (Vanderbilt University) Herschel data: ESA/Herschel/PACS & SPIRE/ HerPlaNS survey/I. Aleman et al.

distant-traveller:

New molecules around old stars

Using ESA’s Herschel space observatory, astronomers have discovered that a molecule vital for creating water exists in the burning embers of dying Sun-like stars.

When low- to middleweight stars like our Sun approach the end of their lives, they eventually become dense, white dwarf stars. In doing so, they cast off their outer layers of dust and gas into space, creating a kaleidoscope of intricate patterns known as planetary nebulas.

These actually have nothing to do with planets, but were named in the late 18th century by astronomer William Herschel, because they appeared as fuzzy circular objects through his telescope, somewhat like the planets in our Solar System.

Over two centuries later, planetary nebulas studied with William Herschel’s namesake, the Herschel space observatory, have yielded a surprising discovery.

Like the dramatic supernova explosions of weightier stars, the death cries of the stars responsible for planetary nebulas also enrich the local interstellar environment with elements from which the next generations of stars are born.

While supernovas are capable of forging the heaviest elements, planetary nebulas contain a large proportion of the lighter ‘elements of life’ such as carbon, nitrogen, and oxygen, made by nuclear fusion in the parent star.

A star like the Sun steadily burns hydrogen in its core for billions of years. But once the fuel begins to run out, the central star swells into a red giant, becoming unstable and shedding its outer layers to form a planetary nebula.

The remaining core of the star eventually becomes a hot white dwarf pouring out ultraviolet radiation into its surroundings.

This intense radiation may destroy molecules that had previously been ejected by the star and that are bound up in the clumps or rings of material seen in the periphery of planetary nebulas.

The harsh radiation was also assumed to restrict the formation of new molecules in those regions.

But in two separate studies using Herschel astronomers have discovered that a molecule vital to the formation of water seems to rather like this harsh environment, and perhaps even depends upon it to form. The molecule, known as OH+, is a positively charged combination of single oxygen and hydrogen atoms.

In one study, led by Dr Isabel Aleman of the University of Leiden, the Netherlands, 11 planetary nebulas were analysed and the molecule was found in just three.

What links the three is that they host the hottest stars, with temperatures exceeding 100 000ºC.

“We think that a critical clue is in the presence of the dense clumps of gas and dust, which are illuminated by UV and X-ray radiation emitted by the hot central star,” says Dr Aleman.

“This high-energy radiation interacts with the clumps to trigger chemical reactions that leads to the formation of the molecules.”

Image credit: Hubble image: NASA/ESA/C. Robert O’Dell (Vanderbilt University) Herschel data: ESA/Herschel/PACS & SPIRE/ HerPlaNS survey/I. Aleman et al.



janemba:

soujaboymeetsworld:

jackanthonyfernandez:

thechanelmuse:

Meet Cory Nieves. He’s a dapper, 10-year old CEO of Mr. Cory’s Cookies who started his own booming cookie business in an effort to help his mom buy a car after moving from NYC to New Jersey in 2009.

!!!!!! COOKIE CEO !!!!!!!

this is the best post on tumblr ever!!!

What the fuck



T H E M E